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Summary

Two replicate selection lines for abdominal bristle number in both high and low directions and
2 control lines were established from a laboratory population of Drosophila subobscura and were
run for 23-24 generations. The sum of the bristles on the 4th and 5th abdominal sternites was the
criterion of selection and the intensity of selection used was 20 p. 100.

Response to selection was very similar to the response obtained by other authors in
Drosophila melanogaster. This indicates that the behaviour of the genotype responsible for the
abdominal bristle number may be similar in the 2 species, in spite of the fact that Drosophila
subobscura is very rich in chromosomal polymorphisms and Drosophila melanogaster is very poor.
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Résumé

Sélection pour le nombre de soies abdominales chez Drosophila subobscura,
espèce très polymorphe pour les arrangements géniques

On a établi 2 lignées de sélection (haute et basse) pour le nombre de soies abdominales ainsi
que 2 lignées témoins à partir d’une population de laboratoire de Drosophila subobscura. On a
conduit la sélection pendant 23-24 générations. Le caractère sélectionné était le nombre de soies
des 4’ et 5’ sternites de l’abdomen et l’intensité de sélection était de 20 p. 100.

La réponse à la sélection a été semblable à celle obtenue par d’autres auteurs chez Drosophila
melanogaster. Cette concordance indique que la nature du génotype responsable du nombre de
soies abdominales peut être similaire dans les 2 espèces, bien que Drosophila subobscura montre
un polymorphisme chromosomique beaucoup plus riche que Drosophila melanogaster.

Mots clés : Sélection artificielle, caractère neutre, Drosophila subobscura.



I. Introduction

An important characteristic of Drosophila subobscura is that inversion polymor-
phisms are found on all of its major chromosomes. These polymorphisms have not only
been studied intensively from a structural and a evolutionary point of view, but also
relative to other characters such as enzymatic polymorphisms and morphological traits
(see an update review by KRIMBAS & LoutcAS, 1980).

PREVOSTI (1967), while artificially selecting for an adaptative trait, wing length, in
Drosophila subobscura, found a stronger response than that obtained in Drosophila
melanogaster by other workers using the same selection criteria. One of the explana-
tions given for this was that the numerous inversions in D. subobscura facilitated
selection response.

These results suggested that it would be interesting to study the relationships
between neutral traits and chromosomal polymorphisms, and specifically to determine
whether the presence of inversions facilitates selection response in a neutral trait. For
this reason, an artificial selection experiment for abdominal bristle number in D.

subobscura was initiated. Abdominal bristle number is classically considered to be a

neutral character (CLArroN et al., 1957 ; LATTER & ROBERTSON, 1962) and has been
used in a large number of artificial selection experiments in D. melanogaster (MATHER
& HARRISON, 1949 ; RASMUSON, 1955 ; CLAYTON el al., 1957 ; SHELDON, 1963 ; FRAN-
KHAM et al. , 1968 ; Yoo, 1980). The response to selection for this neutral trait obtained
in D. subobscura, a species with high level of inversion polymorphisms, was then
compared to the responses reported in D. melanogaster, a species with a low level of
inversion polymorphisms.

II. Material and methods

A sample of 32 females of a wild population of D. subobscura, from Ribarroja
(Valencia, Spain), was used to start the population used in this experiment. The

population was maintained in the laboratory for 5 months before the experiment began.

Before selection began, the heritability of abdominal bristle number was estimated
from offspring-parent regression analysis. Egg samples were obtained from the labora-
tory population and placed in food bottles under conditions of optimal density. Samples
of males and females were taken from the bottles and each male was allowed to mate
in a separate bottle with a virgin female. When the progeny emerged, 4 males and 4
females were scored for each of 150 couples producing offspring.

From the laboratory population, 2 replicate selection lines for abdominal bristle
number in both high (Hl and H2) and low (Ll and L2) directions and 2 control lines
(Cl and C2) were run 23-24 generations. The sum of the bristles on the 4th and 5th
sternites was the criterion used in selection and the intensity of selection was 20 p. 100.

Twenty males and 20 females from each of 6 bottles in each of the 2 high and low lines
were scored each generation. The most extreme 4 males and 4 females from each bottle
were selected. Therefore in each line 240 individuals were scored and 48 individuals
were selected for breeding each generation. In each of the control lines 20 males and



20 females were also selected and scored from each of the 6 bottles. Again 4 males and
4 females were selected for breeding. In these lines, however, the selection was done
randomly.

The 48 flies selected from each of the 6 lines in each generation were left for 24
hours on medium (ROBERTSON, 1960) and afterwards the eggs were collected. In all
cases 100 eggs were placed in each bottle (125 ml) to prevent overcrowding.

All flies developed at 19 °C and standard corn meal medium supplemented with
live yeast was used.

III. Results

The means and coefficients of variation of the character distributions in the females
from the wild and laboratory populations are given in table 1. The mean is higher and
the coefficient of variability lower for the laboratory population, which is as expected
since a natural environment is less homogeneous than one in the laboratory.

The heritability estimate of the laboratory population and its standard error were

0.40 ± 0.05. This value was sufficiently large to ensure a good response in a mass

selection exercise.

Figure 1 shows the results of 23-24 generations of selection in the high, low and
control lines. The total increase in the HI and H2 high selection lines was 40 and 37
respectively. In both lines, the response was greater in early generations as compared
to the later generations. The rate of response in the 2 replicate lines was very similar.

The behaviour of low selection lines was very similar to that displayed by the high
selection lines, but the response was much slower after the first few generations. The
total response resulted in a decrease of 23 and 21 bristles in the Ll and L2 lines

respectively. The response was slower in these lines, particularly in the later genera-
tions, because some of the flies had already attained the lower limit of zero bristles.
Also in later generations individuals showing gross defects in the sclerotization of the
abdomen appeared, which disguised the true effect of selection (RASMUSON, 1955 ;
CLAYTON et al. , 1957).

In both the Cl and C2 control lines the mean bristle number tended to remain

somewhat constant but with a slight tendency to increase.





The mean of 35 bristles in the laboratory population at the start had changed to a
mean of 37 bristles by the end of the experiment.

Overall the response to the selection was asymmetrical, being much greater when
selection was for high bristle number. This asymmetry, which appears in the first

generations, seems to be due to the effect of scale because the realized heritability was
the same in the high and low selection lines, at least during the early generations. In
the L2 line heritability dropped to zero in the later generations.

Sublines were taken from all high and low selection lines at the 4th generation and
submitted to reverse selection for 6 generations. These sublines were developed under
the same conditions as selection lines. In all reverse selection lines (fig. 1) the mean of
the character increased or decreased and reached the mean value of the control lines in

5 generations. These results indicate that all selected lines retained a high level of

variability in spite the changes that occurred in the means (FRANKHAM et al. , 1968).
At the 4th and 20th generations of selection, natural selection sublines were

developed from each high and low selection line (fig. 1). In all but one of these natural
selection lines, the mean remained constant and did not show any tendency to revert to
initial values. The second time natural selection lines were developed, the line from L2
showed a different behaviour. As can be seen in figure 1, the bristle number of that
line increased and its coefficient of variation decreased markedly (from 38 to 12).

In all directional selection lines the coefficient of variation (fig. 2) remained more
or less constant until the 9th generation. After that the high and low selection lines

began to show different behaviours. In both the control and high selection lines, the
coefficient of variation did not show significant changes or decreased slightly. In the

low selection lines, the coefficient of variation increased significantly, particularly in the
L2 line.

In order to know some characteristics of the genotypes selected, reciprocal crosses
between selection lines were made when the selection process had been completed
(tabl. 2). In each cross 60 males and 60 females were mated and 120 individuals of

each sex of the Fl and F2 were scored.





Differences between males and females of the Fl indicate that there are factors on
the X chromosome. In addition mean values of males and females of the F2 of each
cross increased or decreased in respect to the F1 values as was expected.

As can be seen in table 2, the mean value of the Fl from crosses between selected
lines was usually smaller than the average of the parents. The explanation for this may
be that the genes responsible for low bristle number are partially dominant over the
genes for high bristle number. Such an effect has been found by FRANKHAM (1970).
CLAYTON et 11I. (1957), KIDWELL & KIDWELL (1966) and RATHIE & NICHOLAS (1980),
however, found complete additivity for the same character.

The sex-dimorphism ratio oscillated between 1 and 1.02 in the laboratory popula-
tion. These values indicated that there is no sex-dimorphism with respect to abdominal
bristle number in D. subobscura, in contrast to other species (Yoo et al., 1981). The
response pattern was very similar between sexes within a line. ANCOVA analysis shows
significant differences between sexes only in the L2 line (F = 4.3, P = 0.05).

Both selected and control lines show a considerable oscillation in viability, but the
regression of viability on generation number is significant only in a few cases. These
regressions are negative in all lines except Cl, which suggests that the process of
selection leads to a decrease in viability, as is typical in artificial selection experiments.

IV. Discussion

PREVOSTI (1967), making artificial selection for wing length in D. subobscura, found
a response stronger than the response obtained by other workers using the same
selection criteria in D. melanogaster. One of the explanations given for this was that
there were numerous inversions present in the populations he submitted to selection.
During selection, the blocks of genes included in inversions apparently can behave as
« supergenes » in controlling differences in wing length. So, at least in the early
generations, selection is concerned with only a few units, each with a large effect. D.
melanogaster does not have numerous inversions on the chromosomes, consequently
selection acts on many more individual units (single genes) associated with polygenic
variation. Thus the long-term selection effect is greater but the short-term selection

response is slower (PREVOSTI, 1967).

In the present experiment, using a population of D. subobscura highly polymorphic
for numerous inversions (MARTINEZ-SEBASTIAN & DE FRUTOS, 1983), a response to short-
term selection greater than the response obtained in D. melanogaster, and a lesser

response to long-term selection, would be expected. Yet by comparing the results with
previous studies on D. melanogaster (CLAYTON et al., 1957 ; CLAYTON & ROBERTSON,
1957 ; SHELDON, 1963 ; FxANxHAM et al., 1968 ; etc.) it can be seen that the response is

very similar in the 2 species. CLAYTON et al. (1957), using the same intensity of

selection (20 p. 100), obtained a response of 2.6 bristles per generation in high
selection lines and 1.5 bristles in low selection lines, during the first five generations. In
the present experiment a very similar response was observed (2.5 and 1.6 respectively)
in the first five generations. Considering the entire 24 generations of selection, the

response in the 2 species was remarkably similar.



The response of natural selection sublines indicates that the forces regulating the
maintenance of bristle number are not very strong and that the factors determining
bristle number are really neutral for natural selection (FALCONER, 1981) in much the
same way as in Drosophila melanogaster abdominal bristle number and other bristle
systems (CLAYTON et Cil. , 1957 ; LATTER & ROBERTSON, 1962 ; CREUS, 1978 ; MARCOS
& CREUS, 1981).

The variability in selection lines is shown in figure 2. Variability did not decrease
in one control line. But somewhat surprisingly it did not decrease, as might be

expected, in all the selection lines. This, however, has also been found in other
selection experiments and may be due to the release of new genetic variability through
recombination (MATHER, 1941 ; THODAY & BOAM, 1961 ; THODAY et al. , 1964 ; INGRAM
& JINKS, 1982) or due to the increase of developmental errors arising from an increased
level of homozygosity (REEVE & ROBERTSON, 1953 ; FALCONER, 1955).

The sudden and spectacular increase in the coefficient of variation which occurred
in the L2 line might be due to selection of heterozygotes for genes which are lethal in
one of the homozygous combinations but which have some effect on bristle number in
the heterozygous combination (CLAYTON et al. , 1957 ; FRANKHAM et al. , 1968 ;
FRANKHAM, 1970 ; Yoo, 1980). This agrees with the fact that this line (L2) is the only
one that reaches a plateau while a high level of phenotypic variability still remains.

Moreover, when the second set of natural selection sublines were developed the

response of the L2 natural selection line supports the idea that heterozygotes for a
lethal gene have increased in frequency.
MATHER (1941) observed enormous variation in abdominal bristle number, particu-

larly in the ratio of number in the 2 sexes, among several species of Drosophila. The
values of the sex-dimorphism ratio in our laboratory population and the fact that the
response pattern in the selection lines was very similar between sexes within a line
indicate that there is no sex-dimorphism in D. subobscura, in contrast to other species
(Yoo et al., 1981). Crosses between lines show the existence of factors influencing
bristle number in chromosome X. Consequently, the lack of sex-dimorphism in this

species must be due to total dosage compensation for the number of abdominal bristles.

The high degree of agreement between the response to selection in D. melanogas-
ter and D. subobscura indicates that the behaviour of the genes responsible for the
abdominal bristle number must be similar in the 2 species, in spite of the fact that D.
subobscura is very rich in chromosomal polymorphisms and D. melanogaster is very
poor.

Why, when selection is for wing length, does the presence of inversions provoke a
stronger response than the expected (PREVOSTi, 1967) whereas, when selection is for
abdominal bristle number, the presence of inversions seems to have no effect on

response ? The answer to this question may be in the differences between the 2 traits.

A study by PREVOSTt (1967) gives evidence that the existence of differences in the
genes controlling wing size, within the inverted regions of chromosomes, was responsi-
ble for the rapid selection response. He suggested that the selection process involves
only a few units (blocks of genes) rather than individual polygenes.

For a neutral character, such as abdominal bristle number, it is reasonable that
some of the chromosomal arrangements may each have some genes with a positive
effect and some with a negative effect. That is to say, the different arrangements of
each chromosome may have the same overall effect on the character. A similar effect



has been found in numerous cases with enzymatic polymorphisms (ZOUROS et al. , 1974 ;
LOUKAS & KRIMBAS, 19g0 ; CABRERA et al., 1983).

If this is true, selection will tend to cause structural homozygosity (MARTINEZ-
SEBASTIAN & DE FRUTOS, in preparation) but the response in the early generations will
not be stronger than would occur if the genes influencing the trait were only partially
linked. When the level of structural homozygosity increases, the suppression of recom-
bination due to the presence of inversions will disappear (KmMBns & ZouRos, 1969 ;
SPERLICH & FEUERBACH, 1974). If recombination is then allowed, the response to

selection will continue (RASMUSOrr, 1955 ; CARSON, 1958 ; MCPHEE & ROBERTSON, 1970 ;
MARKOW, 1975) and the total response to long-term selection will be similar to the

response obtained in a less polymorphic species such as D. melanogaster.
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